News

Company News: SuppreMol Initiates Phase IIa Clinical Trial in Systemic Lupus Erythematosus (SLE) With Its Lead Candidate SM101

SuppreMol GmbH, a privately held biopharmaceutical company developing innovative therapeutics for the treatment of autoimmune diseases and allergies, today announced the initiation of a Phase IIa clinical trial with its lead product SM101 in Systemic Lupus Erythematosus (SLE).

The multi-centric, randomized, double-blind, placebo-controlled, parallel group Phase IIa study will enroll 50 SLE patients with or without a history of Lupus Nephritis and a SELENA-SLEDAI score of ≥ 6 and active serological status. Over four weeks, two groups of twenty patients each will intravenously receive 6 or 12 mg/kg/week of SM101, while 10 patients will receive placebo. 30 clinical sites in Australia, Belgium, the Czech Republic, France, Germany, Italy, Poland, Spain, and the UK will participate.

The primary endpoint of the proof-of-concept trial is safety based on the incidence of adverse events according to the Common Terminology Criteria for Adverse Events (CTCAE). Further safety endpoints comprise, among others, vital signs, body temperature, body weight, electrocardiogram, safety laboratory assessments, and the occurrence of anti-drug antibodies (ADAs). Efficacy is determined by overall and renal disease score assessments, proteinuria, urine sediment, a number of biochemical, biological and molecular markers, and use of rescue medication. Results of the trial are expected for 2013.

SM101 already has been shown to have an excellent safety and tolerability profile as well as favorable pharmacokinetics in a Phase Ia trial in 48 healthy volunteers completed in 2009. Subsequently, a Phase Ib/IIa multi-center clinical trial for the treatment of Primary Immune Thrombocytopenia (ITP) was started in early 2010.

Food for Thought: Weekly Wrap-Up

Hildegard Kaulen in Frankfurter Allgemeine Zeitung (FAZ) reports from the 61st Lindau Meeting of Nobel Laureates on the need for novel antibiotics. She features the talk of Thomas A. Steitz from Yale University on ribosomes and novel antibiotics. Steitz in 2009 received the chemistry nobel prize for the structure determination of ribosomes together with Ada Yonath and Venkatraman Ramakrishnan. This discovery has led to novel insights on antibiotics binding to these cellular organelles – an important prerequisite for the design of novel antibiotics as bacterial ribosomes still are the most important targets for antibiotics. Among others, the scientists learned that the larger the contact area of ribosomes and an antibiotic, the more mutations are necessary to evade the binding and anti-microbial activity of the compound. Steitz therefore recommends linking antibiotics. He also co-founded a company, Rib-X Pharmaceuticals, which is designing novel antibiotics by structure-based design. Its most advanced compound successfully completed a Phase II study this year.

Richard Friebe, also in FAZ, reports on a breakthrough in synthetic biology accomplished by a team of German, French and Dutch scientists and published in Angewandte Chemie. Other than Craig Venter, who rebuilt an organism by chemically synthesizing its DNA, the group designed a partially artificial organism. Using automated selection, the researchers transformed an E. coli strain unable to synthesize thymine nucleotides into an organism incorporating the artificial thymine analogue 5-chlorouracil instead of thymine into its entire DNA. The goal of the project was to demonstrate that it is possible to develop a generic technology for evolving the chemical constitution of microbial populations by using the simplest possible algorithms. Members of the team recently co-founded Heurisko USA Inc.

Die Welt reports on novel insights into the medical role of Helicobacter pylori, a bacterium living in the human stomach and known for its ability to cause gastritis, gastric ulcer and stomach cancer. Christian Taube from the University of Mainz and colleagues from Zurich University recently published findings that early infections with Helicobacter can protect against allergic asthma. In newborn mice, an early infection impaired maturation of dendritic cells in the lung and increased enrichment of regulatory T cells responsible for oppressing asthma. Resistance is lost once Helicobacter is eradicated with antibiotics. The researchers therefore think that the increase of allergic asthma may be caused by today’s widespread use of antibiotics.

Type 2 diabetes can be cured by a strict diet, reports Christina Berndt in Süddeutsche Zeitung (SZ). In a UK study comprising 11 type 2 diabetics, in 7 of the patients insulin production normalized and the liver started to respond to the hormone properly after they were put on a strict 600 kcal diet for 8 weeks. The cure even worked in patients suffering from diabetes for 4 years and the effects were lasting, provided the patients did not overeat subsequently.

William Pentland in Forbes writes that the US Defense Advanced Research Projects Agency (DARPA) is a driving force behind a new effort to harness biology as a manufacturing platform. The “Living Foundries” program is designed to fund projects that enable on-demand manufacturing capabilities for the production of advanced materials and devices. “Key to success,” DARPA writes, “will be the democratization of the biological design and manufacturing process, breaking open the field to those outside the biological sciences.” As examples, DARPA mentions next-generation DNA synthesis and assembly technologies, modular genetic parts and systems, and cell-based fabrication systems.

In a Forbes interview conducted by Alex Howard,  Charlie Quinn, director of data integration technology at the Benaroya Research Institute, talks about the necessity of new tools and strategies to cope with today’s data deluge. Quinn, who is dealing with genomics, maintains that it is not only about novel technologies but also about cultural changes to create greater value by sharing data and establishing open source and even open data projects, sharing data much earlier than it is done now. Thereby, novel ideas can be spread earlier. “What we’ve been doing is going around and trying to convince people that we understand they have to keep data private up to a certain point, but let’s try and release as much data as we can as early as we can.”

Food for Thought: Weekly Wrap-Up

The human genome of newborns contains an unexpectedly low number of mutations, writes Joachim Müller-Jung in Frankfurter Allgemeine Zeitung (FAZ). Contrary to earlier estimates of 100-200 mutations generated in the germ cells of parents, the number is only about 60. Results come from sequencing the entire genomes of two families with one child each. The results have implications for understanding human evolution and genetics.

Sonja Kastilian, also in FAZ, features a preliminary report of IQWiG, Germany’s watchdog agency appraising drugs and treatments for quality and cost effectiveness, on the benefits of HPV testing of women as a screening for ovarian cancer. IQWiG set out to compare DNA tests for HPV with common pap smear tests and reported that the HPV tests leas to an earlier diagnosis and better follow-up examinations, regardlesss of whether it is applied alone or in combination with the conventional test. A final decision on whether the test is to be reimbursed by Germany’s statutory healthcare system is expected for 2012. In 2006, the Joint Federal Committee (G-BA), the body in charge, had voted against reimbursement for cost reasons. Kastilian also points out that HPV vaccination rates at present are below 30% in young women in Germany, in contrast to up to 81% in the UK, Portugal, and Australia. Reason has been an unduly discussion in German media about potential risks, high costs and lack of efficacy.

Uta Neubauer in Neue Zürcher Zeitung (NZZ) reports on novel approaches to use cold plasma to disinfect wounds, hands, and food. A method and device developed by the German Max Planck Institute for Extraterrestrial Physics has already demonstrated safety and efficacy in treating wounds and disinfecting hands. At present, it is under investigation for the treatment of foods, e.g. food additives and berries.

Sven Titz, also in NZZ, deals with latest insights into the physics of the water surface. Using vibration spectroscopy, physicists of the University of Southern California at Los Angeles found that the surface is made up basically by -OH groups of the water molecules sticking out from the liquid. The discovery will lead to better understanding solubility of molecules in water.

Forbes this week introduces two innovations in optics. Jennifer Hicks writes about the “socialization of the microscope” by a technology that allows the display of microscopic images on an extremely large multitouch screen, just like an oversized iPad. Thereby, groups of students, pathologists or researchers can focus on tiny details by touching, gesturing, and zooming in and out. A video of the microscope at work can be found here.

Californian-based start-up Lytro has unveiled a camera that can take pictures without focusing, writes Tomio Geron in Forbes. Instead, focusing on any point of interest in the photo is done once the image is loaded on a computer. The consumer camera is based on the light field technology invented by Stanford University researchers. The camera is fitted with special lenses and a sensor that captures every ray of light hitting it, regardless of whether it is from the fore- or the background, and records its individual color, intensity and direction. The camera therefore also can be used to generate 3D-pictures. Examples can be found here.

The Economist this week introduces an intelligent drug delivery approach using nanoparticles. It can be used to deliver anti-cancer chemotherapeutic drugs and makes use of the blood-clotting mechanism: first, nano-sized golden rods are injected into the blood stream. They fit into the unusual pores common in capillaries nourishing tumors and thereby mark tumor sites. Once they are in place, the tumor site is treated with laser light bursts. Their energy is absorbed by the gold and converted to heat destroying the capillaries so that the body’s coagulation system is triggered to repair the damage. This is when the second nanoparticles come into play. They carry the chemotherapeutics together with a fibrin-binding protein fragment and are designed to release the drug upon fibrin-binding only. The treatment strategy therefore delivers the drug exactly to the site the coagulation system is active, that is, at the tumor. The method developed at the Massachusetts Institute of Technology (MIT) has proven safety and efficacy in mice and will be tested in humans soon.

Researchers from the University of Rochester have come up with just another idea to release drugs on target, the New Scientist reports. They found that nanocarbon tubes containing aqueous solutions can be made to pop open by heating them from the outside with infrared lasers. Patients could be administered nanocontainers carrying drugs to deliver it to a desired target where the drug then is released by laser light.

And finally, Die Welt this week deals with wrinkles and high tech attempts to avoid or get rid of them. Clinical studies in people with an average age of 87 prove that vitamin A1 (retinol) is useful to smooth skin. Also, light from LEDs is able to remove a water film caging the skin’s elastic fibers so that they become rigid. The method is best applied by pre-treating the skin with green tee polyphenols to deactivate free radicals generated by the LEDs. Moreover, scientists from Hamburg-based Skin Investigation and Technology SIT found out that eating one bar of dark chocolate a day also leads to a 34% improvement of skin elasticity after 6 months. Further attempts to eliminate wrinkles are being made by using signaling peptides activating collagen-producing cells and by polymers carrying nanoparticles that are injected between outer and inner skin layers. The resulting films disperse the compression forces within the skin, thereby “ironing” it from inside.

Company News: Scil Technology Receives Public Research Grant for Novel Rheumatoid Arthritis Treatments

Scil Technology GmbH, a biopharmaceutical company with core expertise in protein drug development, formulation and analytics, today announced that it has been awarded research funding by the German Federal Ministry of Education and Research (BMBF) under BMBF’s KMU-innovativ scheme. The EUR 0.9 million grant supports Scil Technology’s research program to explore the therapeutic potential of repellent proteins for the treatment of rheumatoid arthritis (RA).

The course of RA is affected by the destruction of cartilage tissue and inflammation of the joints. Recently, it has been published that so-called repellent proteins inhibit fundamental processes relevant for the development of the disease. Repellent proteins therefore bear the potential to provide the first causative treatment of RA.

1 161 162 163 188