Tag: lithium-ion batteries

Food for Thought: Weekly Wrap-Up

Clemens Gleich in Die Welt reports on the development of super batteries able to power a smart phone or notebook for days without re-charging. While some researchers try to improve conventional lithium-ion batteries by modifying the carbon-based anode with silicon, others design lithium-oxygen or fluorine-oxygen batteries. Main challenges are safety, prevention of swelling and maintaining a high capacity.

Britta Verlinden in Die Zeit reports on the discovery that dimethyl fumarate, a standard drug used for the treatment of psoriasis since 1994, may also be used as a pill to treat multiple sclerosis. Preliminary results of a Phase III trial demonstrate its ability to significantly reduce the number of attacks. The drug candidate codenamed BG-12 is being developed by Biogen Idec. The paper raises the concern that BG-12 may be sold as MS medication at €15,000 a year – while based on the price of the same compound for psoriasis, costs would amount to €4,400 per year, which already “is clearly more costly than what might be expected based on the cheap basic material”.

The Economist this week features the discovery of Oxford University scientists that a small marine organism produces a water-resistant, flexible material which has the adhesive characteristics of barnacle glue and the structural properties of spider-silk fibres. Already, spider silk is being used for novel materials. A salt water tolerant silk might open up medical uses for silk where it would come in contact with salty body liquids. The paper also looks into the prospects of stem cell therapies. While Geron’s pulling out of the stem cell business is viewed as bad news for the field, the paper highlights good news coming from a Lancet paper describing how stem cells can be used to repair hearts. The injection of autologous heart stem cells into damaged heart muscles of patients which underwent coronary bypass surgery led to “remarkable” results, improving pumping volume and other parameters.

Linda Geddes in The New Scientist raises hopes that partial wave spectroscopic (PWS) microscopy some day may be used to screen the general population for diseases like cancer, Alzheimer’s Disease or autoimmune diseases. PWS microscopy can detect changes in the chromatin density of cells, and researchers already have shown that cancer patients even in apparently healthy cells have unusual chromatin densities not seen in cancer-free people.

Finally, Alex Knapp in Forbes proclaims the end is in sight: we may be approaching the day where coffee is both rare and expensive. For one, the demand is growing all over the world at an enormous rate, and second, at the same time yields are diminishing because of pests, climate changes and political instabilities. So enjoy your coffee while it lasts!

Food for Thought: Weekly Wrap-Up

In Frankfurter Allgemeine Zeitung (FAZ), Manfred Lindinger reports on progress in designing intelligent materials. Physicists of Technical University Hamburg-Harburg succeeded in designing gold- and platinum-based materials that can be switched between hard and brittle or soft and elastic, just by applying different voltages. The trick is done by etching pores and channels into the material which subsequently are filled with perchloric acid.

Martina Lenzen-Schulte, also in FAZ, deals with the surprising finding that a screening test for ovarian cancer increases the number cases detected but at the same time does not improve survival. The test based on the CA-125 tumor marker was investigated in the PLCO longitudinal analysis comprising more than 75,000 women aged between 55 and 74 years, who were diagnosed as cancer-free at the beginning of the study. Half of them was tested once a year with the CA-125 test. While more women were diagnosed with ovarian cancer in the CA-125 test group, the outcome did not improve – in part, because the test did not detect the cancer early enough. Moreover, it resulted in a high number of false positives, and these patients were put at unnecessary risk of bleeding, infections, colon injuries and blood loss due to attempts to confirm the diagnosis via biopsies.

In Forbes, Matthew Herper features an interview with David Urdal, the now retiring CSO of Dendreon, who pioneered Provenge, the prostate cancer vaccine approved by the FDA last year as the first anti-cancer vaccine ever. Urdal in detail explains why the company did not specify overall survival as primary endpoint but choose to follow every patient for three years instead. While the FDA first ok’ed the approach and the FDA advisory committee recommended approval in 2007, the FDA did not approve it: in the committee, cell therapists were in favor of Provenge while the oncologists had doubts. The drug was approved only after another study, the famous IMPACT study, had been finished. Urdal maintains that this turned out to be very positive for Provenge: the study revealed new insights about progression in asymptomatic patients and demonstrated that the method to measure disease progression just by counting the time to the next progression event was inadequate. Urdal states that the FDA may have been right to reject Provenge in the first place: “I think if you follow the sentiments within the clinical community I think there was a sense of, okay, if it’s approved I’d probably prescribe it, but geez, it’s a small study, overall survival wasn’t the primary endpoint, there wasn’t a sense of enthusiasm for it, and I think in the end of course the IMPACT study results came back and this completely vindicated the results from the earlier trials.”

William Pentland, also in Forbes, introduces a new battery architecture invented by the Massachusetts Institute of Technology MIT. The semi-solid flow cell basically runs on “sludge”, combining the structure of so-called flow batteries, where the electrolytes are replaced from outside once they are consumed with the favorable energy potential of lithium-ion batteries. Pentland says the new design may have the potential of a game-changer, in particular in combination with electric cars and smart grids.

Todd Woody, also in Forbes, describes buildings that clean up after itself via panels coated with titanium dioxide particles that serve as photocatalysts. Once illuminated by the sun, the particles start destroying dirt on the panel’s surface and, as a side effect, can also clear the surrounding air from nitrogen oxide. The company selling the panels claims they can cut a building’s maintenance costs by a third to half.

The Economist this week makes a case for using personalized medicine approaches in clinical trials earlier. In most cases, the Economist writes, oncologists “base their treatment on where in the body a tumour has sprung up, rather than on which molecular aberrations have caused it”, adding that the same is true for recruiting volunteers for clinical trials, in particular Phase I.

Drawing conclusions from this year’s ASCO (American Society of Clinical Oncology) meeting, the Economist argues it may be much better to match the genetic profiles of patients to the drug being tested, rather than looking for the organs affected. The magazine introduces a study  by Apostolia-Maria Tsimberidou of the University of Texas’s MD Anderson Cancer Centre, in which the author selected volunteers with late-stage cancer across various organs whose tumors were caused by a single, known mutation. 175 volunteers were administered a targeted therapy in a low-dose, Phase I setting while 116 received traditional therapy. In the targeted therapy group, 29% responded, while in the untargeted therapy group there were only 5% responders.

Mark Brown in Wired reports on Harvard University researchers who created the first living laser, a human embryonic kidney cell that was genetically engineered to produce a visible laser beam. The cell producing green fluorescent protein was put between two mirrors and when the team ran pulses of blue light through the cell, it began to emit green light. When bouncing between the mirrors, certain wavelengths were preferentially amplified until a visible laser beam was created for a few nanoseconds. The cell was left unharmed. At present, researchers foresee applications in cell biology research.

Last not least, Herbert Renz-Polster in Der Spiegel this week answers crucial questions on why  kids like jelly babies buth not salad and Brussels sprouts and how they can be made to eat healthy. The answer: it’s the evolution stupid! It is more advisable to eat fat in order to survive the next famine, to eat hastily (who knows when the next rival appears) and it is also wise to avoid eating the unknown (maybe it’s poison). The simple advice: be patient, keep offering the healthy stuff and play while having a meal. That way, kids even learn to like seal fat, whale blubber and roasted locusts.

Food for Thought: Weekly Wrap-Up

MacGregor Campbell reports in the New Scientist that DNA can stretch to nearly twice its length without breaking and explains how this feature can lead to the development of new drugs to fight cancer. Ferris Jabr in the same magazine reports about the first discovery of a virus infecting nematode Caenorhabdis elegans, a workhorse of developmental biology. The discovery will now enable biologists to study virus-host interactions in this model organism.

The Economist introduces a technology developed by Planar Energy (Orlando, Florida) which turns rechargeable batteries into thin, solid devices by printing lithium-ion batteries onto sheets of metal or plastic. The magazine quotes the company by saying the cells will be more reliable than conventional lithium-ion cells, will be able to store two to three times more energy in the same weight and will last for tens of thousands of recharging cycles. They could also be made for a third of the cost. The trick is done by using a ceramic electrolyte which can be printed and appears solid while it allows free passage to lithium ions.

Matthew Herper in Forbes reports on PerkinElmer’s entry into the DNA sequencing market by creating a service business. Researchers can send in DNA for sequencing by PerkinElmer and subsequently access and analyze the genetic data in a computer cloud. Focus will be on human exam sequencing. Matthew also features a video interview with Mischa Angrist, author of “Here is a Human Being: At the dawn of personal genomics” about what it means to look at one’s own sequence data and whether these data should be private or be available for science.

Also in Forbes, Robert Langreth introduces research by William DeGrado, of the University of Pennsylvania trying to breath new life in peptide drugs to fight infectious diseases. DeGrado uses supercomputer simulation to create antibiotics that mimic natural ones but are far simpler to produce and more stable. The first drug designed by DeGrado, PMX-30063 by PolyMedix to treat staphylococcus skin infections is now in clinical trials.

The New York Times also deals with infectious diseases. Sindya N. Bhanoo outlines efforts of researchers from seven countries to analyze how a single strain of Streptococcus pneumoniae bacteria has morphed over 30 years and spread across the world, as a result of evolutionary pressure by antibiotics and vaccines. Within three decades, the strain turned over about 75% of its genome by recombination and mutation. The study appeared in Science.

German papers feature two stories on drugs that surprisingly show efficacy in indications they have not been developed for: Cinthia Briseno in Der Spiegel reports on a study featured in Science on cancer drug Taxol paclitaxel which is able to stimulate the growth of nerve fibers that have been cut in two. The researchers are now planning clinical studies in paraplegics. Nicola von Lutterotti in Frankfurter Allgemeine Zeitung reports a Lancet Neurology study on Prozac fluxetin which is able support the recovery from palsy in stroke patients.