Tag: New Scientist

Food for Thought: Weekly Wrap-Up

Hearts can heal themselves, at least in newborn mice, reports  Sindya N. Bhando in the New York Times. She features a research group that is now trying to identify the genes regulating the process. If the researchers could restart the genetic network in adult animals, science would be a step closer to a better heart disease therapy.

Matthew Herper in Forbes deals with the success of Vertex’s cystic fibrosis drug VX-770 in its 161 patients STRIVE clinical trial. While it works only in a small subset of patients carrying a particular mutation, in this group it improved the patients’ ability to exhale by about 17%. Robert Langreth, also in Forbes, introduces biotech investor Randal J. Kirk who made more than $2 billion from his biotech investments, among others, by selling New River Pharmaceuticals to Shire. Right now, he is about selling his anti-depressant play Clinical Data to Forest Laboratories. Kirk prefers to buy unknown companies at a very low price and stays until a drug gets to the market. His latest interest focuses on synthetic biology, and he runs and finances the 180-person company  Intrexon, founded in 1998 by biologist Thomas Reed. Intrexon claims to command a library of 70,000 DNA pieces that can be used to control gene expression. This enables it, as an example, to induce and regulate in vivo protein expression through dosing of a small molecule activator. Applications range from medical to agricultural and industrial biotechnology and protein production.

Kate McAlpine in New Scientist explains how a technology that manipulates light so that it can deliver sharp images through opaque materials might someday be useful to treat cancer. Like opaque material, human skin scatters light in both time and space, however with the new technology it may be possible to exactly target and destroy cancer cells by laser light without harming surrounding healthy tissue.

Joachim Müller-Jung in Frankfurter Allgemeine Zeitung (FAZ) reports on a new technology to improve hygiene in clinics. Developed by the Max Planck Institute for Extraterrestrial Physics it generates cold plasma gas that is able to kill bacteria even in skin pores within three to five seconds. The technology already is being used in food processing and for treating chronic wounds. The device is about the size of a hand dryer already used in public lavatories. A license to the technology is still available.

Susanne Kutter in Die Wirtschaftswoche reports on a new test to diagnose a myocardial infarction on the spot. It is based on the enzyme glycogen-phosphorylase BB which is released into the blood stream as soon as the heart muscle is suffering from oxygen deprivation. A common competitor test on the market is based on a molecule released only after disintegration of heart muscles cells and tissue, i.e. hours after the incident. The Diacordon test is marketed by Diagenics.

Food for Thought: Weekly Wrap-Up

Joachim Müller-Jung in Frankfurter Allgemeine Zeitung deals with the importance of high quality tissue for the development of personalized cancer therapies. He quotes Catheryn Compton, Director of the NCI’s Office of Biorepositories and Biospecimen Research (OBBR), as saying that billions of dollars have been wasted in the past because researchers developing biomarkers supposed to be predicitive of cancer and responses to therapies relied on tissue samples that were utterly useless:  tissue had been subject to careless handling and storage, and patient histories, data on origin and sampling procedure were missing, so that results were not reproducible. Müller-Jung features Hamburg-based Indivumed as the first and only ISO9001:2008 certified biobank in the world which offers cancer patient tissue and related technical and medical data derived in a standardized procedure accompanied by a detailed protocol.

Jef Akst in The Scientist reports on a new biomarker that can tell at early stages of liver and rare endocrine cancer whether a patient is likely to develop metastases. The biomarker, a protein called CPE-delta N, was able to predict the occurrence of metastases with greater than 90% accuracy, and using the associated RNA as a biomarker, the accuracy was even greater. Preliminary findings suggest it may also be applied to other cancer types.

In the same magazine, Megan Scudellari reports on findings that human cells reprogrammed into multipoint stem cells (so-called induced pluripotent stem cells, or iPS) have hotspots in their genome that are not completely re-programmed. The article raises the question whether iPS are really suited to replace embryonic stem cells.

Detecting volatile substances is the topic of several papers. In New Scientist, Jessica Hamzelou reports on attempts by various research groups to accelerate diagnosis in the operation theater by combining electrosurgery with NMR spectroscopy. The smoke emanating from the cut tissue is directed to a NMR spectrometer which analyses on the spot whether the surgeon is cutting healthy or cancer tissue.

Also in New ScientistArlene Weintraub reports on the Israeli start-up BioExplorers which claims that trained mice are better at detecting explosives than currently used devices and methods. As soon as the mice sniff traces of any of 8 explosives, they flee to a side chamber of their cage as if they are smelling a cat. Scientists from Colorado State University have taught tobacco and mouse-ear cress plants a similar trick – exposed to vapors from TNT, the plants change color. The trick is done by reengineering a certain receptor, reports Ferris Jabr. German Spiegel features a publication by Japanese scientists from Kyushu University who trained a dog to sniff out early-stage colon cancer with a success rate of 90%. The researchers now try to find out which chemicals the dog reacts to.

Ben Coxworth in Gizmag reports on blood clots made visible by nanoparticles. Each particle, developed by Dr. Dipanjan Pan at the Washington University School of Medicine  in St. Louis, Missouri, contains a million atoms of bismuth  and molecules binding to fibrin, a key component of blood clots, at the outside. Bismuth is a toxic heavy metal, which can be detected by a spectral CT scanner. In contrast to regular CT scanners, this new type of scanner is capable of displaying detailed objects or metal in color. Coxworth concludes that “not only could the technology be used to locate blood clots, but it could possibly even treat their cause – ruptures in artery walls. If the nanoparticles contained some sort of healing agent, then once they attached to the fibrin in a blood clot, they could set about sealing any weak spots.”

Food for Thought: Weekly Wrap-Up

MacGregor Campbell reports in the New Scientist that DNA can stretch to nearly twice its length without breaking and explains how this feature can lead to the development of new drugs to fight cancer. Ferris Jabr in the same magazine reports about the first discovery of a virus infecting nematode Caenorhabdis elegans, a workhorse of developmental biology. The discovery will now enable biologists to study virus-host interactions in this model organism.

The Economist introduces a technology developed by Planar Energy (Orlando, Florida) which turns rechargeable batteries into thin, solid devices by printing lithium-ion batteries onto sheets of metal or plastic. The magazine quotes the company by saying the cells will be more reliable than conventional lithium-ion cells, will be able to store two to three times more energy in the same weight and will last for tens of thousands of recharging cycles. They could also be made for a third of the cost. The trick is done by using a ceramic electrolyte which can be printed and appears solid while it allows free passage to lithium ions.

Matthew Herper in Forbes reports on PerkinElmer’s entry into the DNA sequencing market by creating a service business. Researchers can send in DNA for sequencing by PerkinElmer and subsequently access and analyze the genetic data in a computer cloud. Focus will be on human exam sequencing. Matthew also features a video interview with Mischa Angrist, author of “Here is a Human Being: At the dawn of personal genomics” about what it means to look at one’s own sequence data and whether these data should be private or be available for science.

Also in Forbes, Robert Langreth introduces research by William DeGrado, of the University of Pennsylvania trying to breath new life in peptide drugs to fight infectious diseases. DeGrado uses supercomputer simulation to create antibiotics that mimic natural ones but are far simpler to produce and more stable. The first drug designed by DeGrado, PMX-30063 by PolyMedix to treat staphylococcus skin infections is now in clinical trials.

The New York Times also deals with infectious diseases. Sindya N. Bhanoo outlines efforts of researchers from seven countries to analyze how a single strain of Streptococcus pneumoniae bacteria has morphed over 30 years and spread across the world, as a result of evolutionary pressure by antibiotics and vaccines. Within three decades, the strain turned over about 75% of its genome by recombination and mutation. The study appeared in Science.

German papers feature two stories on drugs that surprisingly show efficacy in indications they have not been developed for: Cinthia Briseno in Der Spiegel reports on a study featured in Science on cancer drug Taxol paclitaxel which is able to stimulate the growth of nerve fibers that have been cut in two. The researchers are now planning clinical studies in paraplegics. Nicola von Lutterotti in Frankfurter Allgemeine Zeitung reports a Lancet Neurology study on Prozac fluxetin which is able support the recovery from palsy in stroke patients.

Food for Thought: Weekly Wrap-Up

In Frankfurter Allgemeine Zeitung (FAZ), Manfred Lindinger takes up the issue whether nanotechnology poses danger to human health and the environment in an article and an interview with Jochen Flasbarth, president of the German Federal Environment Agency (Umweltbundesamt – UBA). Flasbarth points out that UBA’s nanotechnology study published last year, highlighting gaps in knowledge about potential health hazards, was misunderstood by the media and the public as a sweeping warning of all things nano. He also dismisses calls for introducing a label for products containing nanotechnology: “If there is no risk, we don’t need to put up a warning sign.”

Several German papers feature and discuss an ad-hoc statement on preimplantation diagnosis  issued January 18 by the German National Academy of Sciences Leopoldina and Berlin-Brandenburgische Akademie der Wissenschaften. It was drafted by 13 eminent German academians from biology, medicine, law and philosophy & ethics, among them nobelist Christiane Nuesslein-Volhard. The statement calls for admission of PID under narrowly defined circumstances (high risk of serious monogenic disorder, chromosomal dysfunction, miscarriage or stillbirth). The parliament needs to to regulate PID after the German Federal Supreme Court last year ruled that Germany’s ban on PID was based on misinterpretation of the country’s Embryo Protection Law.

John Tierney in The New York Times provides new insights on people who underwent personal genetic testing to learn about their risk for conditions from obesity to cancer and Alzheimer’s. It is widespread belief among experts and politicians that personal DNA testing needs careful supervision and cannot be offered without expert guidance. The NYT introduces two studies – one follow-up study of about 2,000 people who had a genomewide scan by Navigenics  and one representative sample of 1,500 people – and found that the medical field overestimates the level of psychological anxiety or trauma caused by the results and is way too paternalistic about the tests. One researcher is quoted by saying: “We should recognize that consumers might reasonably want the information for nonmedical reasons. People value it for its own sake, and because they feel more in control of their lives.”

Gardiner Harris reports that the Obama administration has become so concerned about the slowing pace of new drugs coming out of the pharma industry that it has decided to start a federal billion-dollar drug development center. The “National Center for Advancing Translational Sciences” will open in October this year and will beef up early research results by finding leads against new targets or even perform preclinical studies so that projects become attractive to the pharma industry. NIH director Francis S. Collins who is behind the idea, is quoted by NYT as saying: “I am a little frustrated to see how many of the discoveries that do look as though they have therapeutic implications are waiting for the pharmaceutical industry to follow through with them.” In a first step, more than $700 million in research projects from other NIH institutes will be brought together at the new center.

Gina Kolata reports on an FDA advisory committee recommending approval of a new brain scan that can detect the typical plaques in the brains of living Alzheimer disease patients. The test has been developed by Avid Radiopharmaceuticals, now a subsidiary of Eli Lilly (see akampioneer, June 24, 2010).

In the New Scientist, Anil Ananthaswamy features findings from Australian researchers suggesting that Parkinson’s disease, Multiple Sclerosis and maybe other, more common diseases such as rheumatoid arthritis or diabetes, might be cured by antibiotics and subsequent (re-)colonization of the colon with bacteria from healthy people. The hypothesis was derived from case studies of Parkinson’s patients treated for colon infections, in which the treatment also abated the Parkinson’s symptoms. The researchers from the Center of Digestive Diseases in New South Wales are now planning a pilot study in Parkinson’s patients. Already, neuroanatomists from German Ulm University have suggested in 2003 that Parkinson’s might be caused by a bug that breaks through the mucosal barrier of the GI tract and enters the central nervous system via the vagus nerve (Journal of Neural Transmission, DOI: 10.1007/s00702-002-0808-2).

Linda Geddes reports on how cytokines associated with inflammation can enter the brain under certain circumstances and cause depression. Unfortunately, the article fails to mention German biotech company Affectis which already has Cimicoxib, an anti-inflammatory COX-2 inhibitor, in Phase II trials for the treatment of depression, after researchers discovered that COX-2 inhibitors can alleviate depression.

1 4 5 6